Heavy Particle Concentration in Turbulence at Dissipative and Inertial Scales
نویسندگان
چکیده
منابع مشابه
Heavy particle concentration in turbulence at dissipative and inertial scales.
Spatial distributions of heavy particles suspended in an incompressible isotropic and homogeneous turbulent flow are investigated by means of high resolution direct numerical simulations. In the dissipative range, it is shown that particles form fractal clusters with properties independent of the Reynolds number. Clustering is there optimal when the particle response time is of the order of the...
متن کاملInertial particle segregation by turbulence.
We study collections of heavy and light small spherical particles initially well mixed with each other, subjected to linear (Stokes) drag force and gravity, and falling through a fluid turbulence. We introduce the segregation power spectrum, which we use to define the segregation length scale. Kinematic simulation predicts that the turbulence can segregate heavy and light falling particles and ...
متن کاملTurbulence Effects at Small Scales
It is most natural to assume that mysterious Small Ionized and Neutral Structures (SINS) in diffuse ISM arise from turbulence. There are two obvious problem with such an explanation, however. First of all, it is generally believed that at the small scales turbulence should be damped. Second, turbulence with Kolmogorov spectrum cannot be the responsible for the SINS. We consider, however, effect...
متن کاملPreferential concentration of heavy particles in stably stratified turbulence.
The effect of preferential concentration of heavy particles in a homogeneous stably stratified turbulent flow is studied by means of direct numerical simulations. Particle distributions show different clustering patterns in horizontal and vertical directions, thereby representing the anisotropy of the flow. Preferential concentration in stably stratified turbulence can be quantified using 2D an...
متن کاملSweep-stick mechanism of heavy particle clustering in fluid turbulence.
It is proposed that the inertial range clustering of small heavy particles in fluid turbulence occurs as a result of the sweep-stick mechanism which causes inertial particles to cluster so as to mimic the clusters of points where the fluid acceleration is perpendicular to the direction of highest contraction between neighboring particles. Direct numerical simulations of inertial particles subje...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2007
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.98.084502